Identify Disease Mechanisms

By mapping the spatial patterns of diseases such as pancreatic cancer, and chronic pancreatitis the lab aims to uncover the underlying mechanisms of disease development and progression. This includes studying how tumor cells, inflammatory cells, or fibrosis are spatially organized and interact with other cells and tissues.

Advanced Preclinical Models for Therapeutic Discovery and Validation

To bridge discovery and clinical benefit, the lab develops and uses patient-derived organoids (PDOs). These 3D "mini-tumors" grown from a patient's own tumor tissue, overcome the limitations of traditional 2D cell lines. PDOs offer high fidelity, recapitulating the genetics, histology, and heterogeneity of the original tumor, and can be established with high success rates from small biopsy samples.

Interrogating Intratumoral Heterogeneity and Therapeutic Resistance

Tumor evolution, driven by intratumor heterogeneity (ITH) and phenotypic plasticity, is a primary cause of therapeutic failure. The Bailey Laboratory investigates the genetic and non-genetic mechanisms sustaining this diversity. Recent work from the Bailey and Corbo labs, published in Nature, has identified extrachromosomal DNA (ecDNA) as a major source of genomic heterogeneity and adaptability in PDAC. ecDNAs are small, circular DNA elements that exist outside of the chromosomes and can carry key oncogenes.

Developing a Spatial Omics Atlas of Pancreatic Cancer

The Bailey laboratory is using spatial omics technologies to build a high-resolution atlas of pancreatic cancer, conceptualizing the tumor as a pathological organ. These methods integrate molecular profiling with spatial tissue context, allowing for the analysis of gene expression, protein interactions, and metabolic states within their original architectural framework.

José Mário Leite

Teresa Cotta-Dias

23 December 2025

Champalimaud Foundation’s Gynaecology Unit Triples Annual Volume of Robotic Surgeries

Between February 2017 and December 2020, the team performed approximately 200 robotic procedures. Over the subsequent five years, from December 2020 to December 2025, this number more than doubled, reaching 500 procedures, an achievement that reflects the consolidation of a nationally recognised reference programme with extensive experience in robotic gynaecological surgery.

10 Dec. 2025

Postdoc Position at the Tissue Immunity Lab

Research
Application Starts: 10 Dec. 2025

Fundação D. Anna de Sommer Champalimaud e Dr. Carlos Montez Champalimaud (Champalimaud Foundation), a private, non-profit research institution, is opening a call for a Postdoc Position.

Subscribe to Cancer
Loading
Please wait...